Benha University
Faculty of Engineering- Shoubra
Electrical Engineering Department
First Year communications.

1st semester Exam Date: 31-12-2012

ECE111: Electronic Engineering fundamentals

Duration: 3 hours

K=1.38×10 ⁻²³ J/K	h=6.64×10 ⁻³⁴ J.s	q=1.6×10 ⁻¹⁹ C	m _o =9.1×10 ⁻³¹ Kg	[Si] n _i =1.5x10 ¹⁰ cm-3
[Si] m _e =1.18 m _o	[Si] m _h =0.81 m _o	[Si] E _g =1.12 eV	[Si] μ_n =1400 cm ² /V.s	[Si] $\mu_p = 400 \text{ cm}^2/\text{V.s}$
$\epsilon_{\rm o}$ =8.85x10 ⁻¹⁴ F/cm	ε _{rs} = 11.7	Eg = 1.12 eV		

Solution

Question 1

	r this question in the form of table. Choose the correct ar	nswer (on	ly one answer is accepted).
1-	For intrinsic semiconductor		
-	(a) All bonds are complete at 0 K	(h)	Part of valance electrons is released at high <i>T</i>
	(c) There are some impurities added		Both (a) and (b)
2	The collision due to		
۷-			·
	(a) Ionized impurities		Lattice vibrations
_	(c) Thermal motion		Drift of particles
3-	As the time between collisions increased, the mobility		
	(a) Remains constant	_ ` '	Decreased
	(c) increased		is affected only by the impurities concentration
4-	As the doping concentration increases above 1x1015, the	ne mobilit	у
	(a) Remains constant	(b)	is affected only by the impurities concentration
	(c) increased	(d)	Decreased
5-	Fick's low can describe		
	(a) Diffusion phenomena	(b)	Drift phenomena
	(c) Both drift and diffusion	(d)	Non of the above
6-	For the fabrication of GaAs pn junction. The most comm	non metho	od is
	(a) Diffusion	(b)	Evaporation
	(c) Epitaxy	(d)	Ion implantation
7-	The linearly graded pn junction are usually made by		
	(a) Diffusion		Evaporation
	(c) Epitaxy	(d)	Ion implantation
8-	The pn junction depletion width varies as		
	(a) $\varepsilon^{1/2}$	(b)	$arepsilon^{3/2}$
	(c) ε	(d) &	
0			
9-	As the reverse bias voltage increases, the depletion cap		
	(a) Decreases		ncreases
10	(c) becomes zero		demains constant
10-	For the active mode of operation of bipolar junction tra		
	(a) Forward/Powers		deverse/Reverse
11	(c) Forward/Reverse		leverse/forward
11-	For a bipolar junction transistor (BJT), the base region is		
	(a) Moderately doped		/ery thin
12	(c) Lightly doped		Both(b) and(c)
12-	Most of the electrons in the base of an npn transistor fl		ato the collector
	(a) Out of the base lead		nto the collector
	(c) Into the emitter	(a) Ir	nto the base supply

1	2	3	4	5	6	7	8	9	10	11	12
d	b	С	d	а	С	а	а	а	С	d	b

Question 2 (20 marks)

- a- In a semiconductor, the Fermi level is 250 meV below the conduction band. What is the probability of finding an electron in a state **KT** below the valance band edge E_V at room temperature?
- b- A bar of silicon is 0.2 mm long and has across-section of 0.2 x 0.2 mm. One volt impressed across the bar results in a current of 8 mA. Assuming that the current is due to electrons, calculate:
 - i. Concentrations of free electrons and
 - ii. The drift velocity.
- c- The doping process of a Si changes its conductivity. There is always a certain specific doping level that causes the conductivity to be a minimum. An n-type semiconductor is doped with that specific level. Calculate the minimum value of the conductivity. (T=300 K)

Solution

(a)

$$F(E) = \frac{1}{1 + e^{\frac{E - E_F}{KT}}}$$

$$E_F - E = (E_g - E_1) + KT$$

$$E_F - E = 1.12 - 0.25 + 0.026 = 0.896 \text{ eV}$$

$$E - E_F = -0.896 \text{ eV}$$

$$F(E) = \frac{1}{1 + e^{-\frac{0.896}{0.026}}} = \frac{1}{1 + 1 \times 10^{-15}} = 1$$

(b)

$$R = \frac{V}{I} = \frac{1}{8 \times 10^{-3}} = 125\Omega$$

$$R = \rho \frac{L}{A}$$

$$\rho = \frac{RA}{L} = \frac{125 \times 0.2 \times 0.2 \times 10^{-6}}{0.2 \times 10^{-3}} = 25 \times 10^{-3} \Omega m = 2.5\Omega cm$$

$$\sigma = \frac{1}{\rho} = 0.4 = q \mu_n n$$

$$n = \frac{0.4}{1.6 \times 10^{-19} \times 1400} = 1.785 \times 10^{15} cm^{-3}$$

$$v_d = \mu E = 1400 \frac{IV}{0.2 \times 10^{-3} \times 100} = 70000 \ cm \ / \sec = 700m \ / s$$

$$\sigma = q \mu_e n + q \mu_h p$$

(c)
$$\sigma = q \mu_e n + q \mu_h p$$

$$\sigma = q \mu_e \frac{n_i^2}{p} + q \mu_h p$$

At minimum conductivity $\longrightarrow \frac{d \sigma}{dp} = 0$

$$\therefore \frac{d\sigma}{dp} = q \mu_h + q \mu_e n_i^2 \left[-\frac{1}{p^2} \right]$$
$$\frac{d\sigma}{dp} = 0$$

$$\therefore q \mu_h = \frac{q \mu_e n_i^2}{p^2}$$

$$p^2 = \frac{\mu_e}{\mu_b} n_i^2$$

$$\rho^{2} = \frac{\mu_{e}}{\mu_{h}} n_{i}^{2}$$

$$\rho = n_{i} \sqrt{\frac{\mu_{e}}{\mu_{h}}}$$

$$p = 1.5 \times 10^{10} \sqrt{\frac{1400}{400}} = 2.8 \times 10^{10} \, cm^{-3}$$

$$np = n_i^2$$

$$n = \frac{n_i^2}{p} = \frac{\left(1.5 \times 10^{10}\right)^2}{2.8 \times 10^{10}} = 8.03 \times 10^9 \, \text{cm}^{-3}$$

$$\sigma_{\min} = 1.6 \times 10^{-19} \left(1400 \times 8.03 \times 10^9 + 400 \times 2.8 \times 10^{10} \right)$$

$$\sigma_{\min} = 1.6 \times 10^{-19} \left(1.1242 \times 10^{13} + 1.12 \times 10^{13} \right)$$

$$\sigma_{\min} = 3.6 \times 10^{-6} \ \Omega^{-1} \text{ cm}^{-1}$$

Question 3 (20 marks)

- Explain the dependence of mobility on temperature. (not more than 6 lines)
- Prove that: $\frac{D_e}{} = \frac{KT}{}$
- c- A bar of silicon of length 0.4 x 10^{-3} cm is illuminated at one end creating $\Delta n = \Delta p = 10^{12}$ cm⁻³ excess electrons and holes. If the diffusion length L_p for the minority holes is 4 x 10^{-3} cm and if all the excess electrons and holes recombine at the other end of the bar. Calculate and plot the steady-state excess minority hole distribution $\Delta p(x)$ as function of the distance along the bar. (Hint Use the approximation, e^x =1+x, for x << 1.)

Solution

101

LOG 4n

(a)

At high temperatures (T>150 K) the mobility is mainly limited by the lattice vibrations. μ decreases with

At low temperatures (T<150 K) the mobility is mainly limited by the **ionized impurities**. μ increases with

$$n = n_i \exp\left(\frac{E_F - E_i}{kT}\right)$$

$$\mathbf{E} = \frac{1}{q} \frac{dE_i}{dx}$$

$$J_n = q\mu_n n\mathbf{E} + qD_n \frac{dn}{dx} = 0$$

$$q\mu_n n_i \exp\left[\frac{E_F - E_i}{kT}\right] \frac{1}{q} \frac{dE_i}{dx} = -\frac{q}{kT} D_n n_i \exp\left[\frac{E_F - E_i}{kT}\right] \left[\frac{dE_F}{dx} - \frac{dE_i}{dx}\right]$$

$$\frac{dE_F}{dx} = 0$$

Then

$$\mu_n = \frac{qD_n}{kT}$$

$$\frac{D_n}{\mu_n} = \frac{kT}{q} = V_T$$

(c)

Continuity equation (no light/steady state)

Note (the light is absorbed in very small region .ie at x=0 and creating an excess of minority carrier of 10^{12} cm⁻³ but the semi conductor does not expose to light

$$\frac{\partial^2 \Delta p}{\partial x^2} - \frac{\Delta p}{L_p^2} = 0$$

This equation has a solution as:

$$\Delta p(x) = C_1 e^{\frac{-x}{L_p}} + C_2 e^{\frac{x}{L_p}}$$

Note $L = 0.4 \times 10^{-3} \text{ cm}$ and $L_p = 4 \times 10^{-3} \text{ cm}$

since
$$L \ll L_p$$
 $\therefore \frac{x}{L_p} \ll 1$

$$\therefore e^x = 1 + x$$
 when $x \ll 1$

Then

$$\Delta p(x) = C_1(1 - \frac{x}{L_p}) + C_2(1 + \frac{x}{L_p})$$

or
$$\Delta p(x) = (C_1 + C_2) - (\frac{C_1 - C_2}{L_p})x$$

** At
$$x = 0$$
 $\Delta p = \Delta p_o = 10^{12}$

ie
$$C_1 + C_2 = 10^{12}$$

** At
$$x = L$$
 $\Delta p = 0$

ie
$$(C_1+C_2)-0.1(C_1-C_2)=0$$

By solving (I) and (II)

$$C_1=5.5\times10^{12}$$

 $C_2=-4.5\times10^{12}$

$$\Delta p(x) = 10^{12} - 2.5 \times 10^{15} x$$

Thus for $x/L_p << 1$ the distribution becomes *linear* not exponential as shown

Question 4 (18 marks)

- For the shown abrupt pn junction drive an expressions for the electric field in the region $-x_p < x < x_n$.
- b- Define: the barrier potential and then derive the expression for the barrier potential (built-in potential) in terms of the doping concentration
- c- An abrupt silicon pn junction at zero bias has dopant concentration of $N_A = 10^{17}$ cm⁻³ and $N_D = 5 \times 10^{15}$ cm⁻³. T = 300 K.
 - i. Calculate the Fermi level on each side of the junction with respect to the intrinsic Fermi level.
 - ii. Calculate the built-in potential.
 - iii. Determine the peak electric field for this junction.

Solution

(a)
$$\frac{d^2\psi(x)}{dx^2} = -\frac{d\mathbf{E}(x)}{dx} = -\frac{\rho_s(x)}{\varepsilon}$$

$$\frac{d\mathbf{E}(x)}{dx} = \frac{-qN_A}{\varepsilon}
\mathbf{E}(x) = -\frac{qN_A}{\varepsilon} x + \mathbf{E}_1
\mathbf{E}(x) = -\frac{qN_A}{\varepsilon} x_p
\mathbf{E}(x) = -\frac{qN_A}{\varepsilon} x_p
\mathbf{E}(x) = -\frac{qN_D}{\varepsilon} x_n
\mathbf{E}(x) = \frac{qN_D}{\varepsilon} x_n
\mathbf{E}(x) = \frac{qN_D}{\varepsilon} x_n
\mathbf{E}(x) = \frac{qN_D}{\varepsilon} (x - x_n)$$

$$\frac{d\mathbf{E}(x)}{dx} = \frac{qN_D}{\varepsilon}$$

$$\mathbf{E}(x) = \frac{qN_D}{\varepsilon}x + \mathbf{E}_2$$

$$\mathbf{E}_2 = -\frac{qN_D}{\varepsilon}x_n$$

$$\mathbf{E}(x) = \frac{qN_D}{\varepsilon}(x - x_n)$$

$$\mathbf{E}_{\text{max}} = \mathbf{E}(0) = -\frac{qN_A}{\varepsilon} X_p = -\frac{qN_D}{\varepsilon} X_n$$

(b)

Barrier potential:

when the n type material put in contact with the p type material, free electrons from n type diffuse and cross the junction and combine with holes in the p type material leaving behind (+ve ions) in the surface of the n type. While (-ve ions) on the p type reign. These positive and negative ions create an electric field which in turn produces an electric potential (barrier potential) that prevent more electrons from crossing the junction.

Derivation: straight forward until:

$$V_o = \frac{KT}{q} \ln \frac{N_D N_A}{n_i^2}$$

(c)

d- An abrupt silicon pn junction at zero bias has dopant concentration of $N_A = 10^{17}$ cm⁻³ and $N_D = 5 \times 10^{15}$ cm⁻³. T = 300 K.

iv. Calculate the Fermi level on each side of the junction with respect to the intrinsic Fermi level.

v. Calculate the built-in potential.

vi. Determine the peak electric field for this junction.

n-side:

$$E_F - E_i = \frac{KT}{q} \ln \frac{n}{n_i} = \frac{KT}{q} \ln \frac{N_D}{n_i} = 0.026 \ln \frac{5 \times 10^{15}}{1.5 \times 10^{10}} = 0.33 eV$$

p-side:

$$E_i - E_F = \frac{KT}{q} \ln \frac{P}{n_i} = \frac{KT}{q} \ln \frac{N_A}{n_i} = 0.026 \ln \frac{10^{17}}{1.5 \times 10^{10}} = 0.408 eV$$

$$V_{bi} = \frac{KT}{q} \ln \frac{N_D N_A}{n_i^2} = 0.026 \ln \frac{10^{17} \times 5 \times 10^{15}}{\left(1.5 \times 10^{10}\right)^2} = 0.7391$$

$$\begin{split} & \boldsymbol{x}_n = \sqrt{\frac{2\varepsilon}{q} \frac{N_A}{N_D N_A + N_D^2} V_{bi}} \\ & \boldsymbol{E}_{\text{max}} = \boldsymbol{E}(0) = -\frac{q N_A}{\varepsilon} \boldsymbol{x}_p = -\frac{q N_D}{\varepsilon} \boldsymbol{x}_n \\ & \boldsymbol{x}_n = \sqrt{\frac{2 \times 8.85 \times 10^{-14} \times 11.7}{1.6 \times 10^{-19}} \frac{10^{17}}{5 \times 10^{32} + 2.5 \times 10^{31}} 0.73} \\ & \boldsymbol{x}_n = \sqrt{\frac{2 \times 8.85 \times 10^{-14} \times 11.7}{1.6 \times 10^{-19}} \frac{10^{17}}{5 \times 10^{32} + 2.5 \times 10^{31}} 0.73} = 4.26 \times 10^{-5} cm = 0.426 \mu m \\ & \boldsymbol{E}_{\text{max}} = \boldsymbol{E}(0) = -\frac{q N_D}{\varepsilon} \boldsymbol{x}_n = -\frac{1.6 \times 10^{-19} \times 5 \times 10^{15} \times 4.26 \times 10^{-5}}{8.85 \times 10^{-14} \times 11.7} = 32913.22 = 3.29 \times 10^4 \ \textit{V/cm} \end{split}$$

a- Given that:
$$X_n = \left(\frac{2\varepsilon_s (V_{bi} + V_R)}{q} \left(\frac{N_A}{N_D}\right) \frac{1}{(N_A + N_D)}\right)^{1/2}$$
.

Drive an expression for the depletion capacitance of the p^+n , and then draw the relation between the reciprocal of the squared of the capacitance and the reverse voltage.

- b- An ideal one-sided silicon p^+ n junction has uniform doping on both sides of the abrupt junction. The doping relation is $N_A = 50 N_D$. Given that: $V_{bi} = 0.752 V$, $V_R = 10 V$, T = 300 K and the cross-sectional area of the junction is $A = 5 \times 10^{-5} \text{ cm}^2$, Determine:
 - i. N_A and N_D
 - ii. x_n , for $V_R = 10$
 - iii. The junction capacitance.
- c- A half wave rectifier with a transformer coupled input is shown in the adjacent figure
 - i. Draw the waveforms V_o and V_D
 - ii. Calculate the values of $V_s(p)$, $V_o(p)$, V_{averge} and F_{out} .

Solution

(a)

$$x_{n} = \left(\frac{2\varepsilon_{s}\left(V_{bi} + V_{R}\right)}{q} \left(\frac{N_{A}}{N_{D}}\right) \frac{1}{\left(N_{A} + N_{D}\right)}\right)^{1/2}.$$

for
$$p^+ n N_{\Delta} >> N_{D}$$

$$\therefore X_n = \sqrt{\frac{2\varepsilon_s \left(V_{bi} + V_R\right)}{qN_D}}$$

$$C' = \frac{dQ}{dV_{P}} = qN_{D}\frac{dx_{n}}{dV_{P}} = \dots$$

$$\therefore C' = \sqrt{\frac{qN_D \mathcal{E}_s}{2(V_{bi} + V_R)}}$$

$$\therefore C'^2 = \frac{qN_D \mathcal{E}_s}{2(V_{bi} + V_B)}$$

$$\left[\frac{1}{C'}\right]^2 = \frac{2}{qN_0\varepsilon_c}(V_{bi} + V_R)$$

(b)

$$V_{bi} = \frac{KT}{q} \ln \frac{N_D N_A}{n_i^2} = 0.026 \ln \frac{50 N_A^2}{\left(1.5 \times 10\right)^2}$$

$$0.752 = 0.026 \ln \frac{50 N_D^2}{\left(1.5 \times 10\right)^2}$$

$$50 N_D^2 = 8.19 \times 10^{32}$$

$$\therefore N_D = 4 \times 10^{15} cm^{-3}$$

 $N_A = 50N_D = 2 \times 10^{17} \, cm^{-3}$

$$x_{n} = \sqrt{\frac{2\varepsilon_{s}(V_{bi} + V_{R})}{qN_{D}}}$$

$$x_{n} = \sqrt{\frac{2\times8.85\times10^{-14}\times11.7\times(0.752+10)}{1.6\times10^{-19}\times4\times10^{15}}} = 1.86\times10^{-4} cm = 1.86 \mu m$$

$$\therefore C' = \sqrt{\frac{qN_D \mathcal{E}_s}{2(V_{bi} + V_R)}}$$

$$C' = \sqrt{\frac{1.6 \times 10^{-19} \times 4 \times 10^{15} \times 8.85 \times 10^{-14} \times 11.7}{2(0.752 + 10)}}$$

$$C' = 5.551 \times 10^{-9} F / cm^2$$

$$\therefore C = C' \times A = 5.551 \times 10^{-9} \times 5 \times 10^{-5} = 0.2775 \times 10^{-12} F = 0.2775 pF$$

(c)

